Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Microorganisms ; 12(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257990

RESUMO

Fowl typhoid is a septicemic disease caused by Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum. It is a host-specific disease primarily affecting chickens and turkeys, although it has been reported in various animal species and sporadically in humans. Here, we present a case of a fowl typhoid outbreak on a turkey poult farm where the source of infection was the hatchery. The birds started showing symptoms of growth retardation at 21 days of age, after which the mortality rates gradually started to increase. Post mortem examination revealed that the main lesions were granulomatous proliferations in the small intestines. The results of the histopathological examination indicate that the severity of the infection was alleviated by the application of phytogenic mixtures and probiotics as a supportive treatment, even though the affected flock was eventually culled at 60 days of age. The farmer was advised to apply more strict biosecurity measures to prevent the spread of the disease on the farm and try to eradicate the pathogen from the barn. Since the outbreak, there have been no recurrent infections.

2.
Dev Comp Immunol ; 149: 105058, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37714394

RESUMO

The H9N2 avian influenza virus significantly affects the health of poultry and humans. We identified a prokaryotic and eukaryotic dual-expression vector system, pJHL270, that can provide simultaneous MHC class I and II stimulation of the host immune system, and we designed vaccine antigens by selecting the consensus HA1 sequence and M2e antigens from H9N2 virus circulating in South Korea from 2000 to 2021. The genes were cloned into the pJHL270 vector, and the cloned plasmid was delivered by a live-attenuated Salmonella Gallinarum (SG) strain. The immunity and protective efficacy of the SG-based H9N2 vaccine construct, JOL2922, against avian influenza and fowl typhoid (FT) were evaluated. The Ptrc and CMV promoters conferred antigen expression in prokaryotic and eukaryotic cells to induce balanced Th-1/Th-2 immunity. Chickens immunized with JOL2922 yielded high antigen-specific humoral and mucosal immune responses. qRT-PCR revealed that the strain generated polyfunctional IFN-γ and IL-4 secretion in immunized chickens. Furthermore, a FACS analysis showed increased CD3CD4+ and CD3CD8+ T-cell subpopulations following immunization. Peripheral Blood Mononuclear Cells (PBMCs) harvested from the immunized chickens significantly increased MHC class I and II expression, 3.5-fold and 2.5-fold increases, respectively. Serum collected from the immunized groups had an evident hemagglutinin inhibition titer of ≥6 log2. Immunization reduced the lung viral titer by 3.8-fold within 5 days post-infection. The strain also generated SG-specific humoral and cellular immune responses. The immunized birds all survived a virulent SG wild-type challenge. In addition, the bacterial burden was reduced by 2.7-fold and 2.1-fold in spleen and liver tissue, respectively, collected from immunized chickens. Our data indicate that an attenuated SG strain successfully delivered the dual-expression vector system and co-stimulated MHC class I and II antigen presentation pathways via exogenous and endogenous antigen presentation, thereby triggering a balanced Th-1/Th-2-based immune response and conferring effective protection against avian influenza and FT.

3.
Comp Immunol Microbiol Infect Dis ; 101: 102055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657160

RESUMO

Our study was undertaken to determine the best samples and selective-differential plating media to be used for Salmonella spp. isolation. We also compared hematological and serum biochemical values, Salmonella biovar Gallinarum (SG) detection (isolation and serological test), and inflammatory intestinal response (fecal leukocyte) in laying hens with naturally occurring fowl typhoid outbreaks. Furthermore, we looked for a biomarker of SG infection. Spleen, liver, ovarian follicle content, and bone marrow were found to be the best samples for SG isolation and the agreement between MacConkey-Salmonella Shigella agar was slight to excellent. The laying hens with SG isolation and rapid serum plate agglutination positive results showed a higher percentage of heterophils, heterophil/lymphocyte ratio and total white blood cells, and a lower percentage of lymphocytes than those with negative results. Furthermore, the positive fecal leukocyte samples had a higher percentage of heterophils, gamma-glutamyl transferase, total protein and globulin values than negative samples. Five biomarkers' cut-offs are proposed to distinguish between laying hens positive and negative to SG isolation.

4.
Microb Pathog ; 182: 106236, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37419218

RESUMO

Salmonella enterica serovar Gallinarum causes Fowl Typhoid in poultry, and it is host specific to avian species. The reasons why S. Gallinarum is restricted to avians, and at the same time predominately cause systemic infections in these hosts, are unknown. In the current study, we developed a surgical approach to study gene expression inside the peritoneal cavity of hens to shed light on this. Strains of the host specific S. Gallinarum, the cattle-adapted S. Dublin and the broad host range serovar, S. Enteritidis, were enclosed in semi-permeable tubes and surgically placed for 4 h in the peritoneal cavity of hens and for control in a minimal medium at 41.2 °C. Global gene-expression under these conditions was compared between serovars using tiled-micro arrays with probes representing the genome of S. Typhimurium, S. Dublin and S. Gallinarum. Among other genes, genes of SPI-13, SPI-14 and the macrophage survival gene mig-14 were specifically up-regulated in the host specific serovar, S. Gallinarum, and further studies into the role of these genes in host specific infection are highly indicated. Analysis of pathways and GO-terms, which were enriched in the host specific S. Gallinarum without being enriched in the two other serovars indicated that host specificity was characterized by a metabolic fine-tuning as well as unique expression of virulence associated pathways. The cattle adapted serovar S. Dublin differed from the two other serovars by a lack of up-regulation of genes encoded in the virulence associated pathogenicity island 2, and this may explain the inability of this serovar to cause disease in poultry.


Assuntos
Salmonelose Animal , Salmonella enterica , Animais , Feminino , Bovinos , Sorogrupo , Galinhas , Transcriptoma , Salmonella enterica/genética , Salmonella enteritidis/genética
5.
Front Vet Sci ; 10: 1191497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476827

RESUMO

Introduction: Salmonella enterica subspecies enterica serovar Gallinarum biovar Gallinarum (SG) is associated with fowl typhoid fever, and the attenuated rough strain SG9R is widely used as a vaccine in many regions. Reversion to virulence of vaccine strains was suspected as the cause during recent fowl typhoid fever outbreaks in poultry in South Africa and Eswatini. Methods: To compare nine field isolates with global wild-type SG9 strains and the two commercial SG9R vaccines in use, Nobilis® SG9R and Cevac®-SG, we used whole-genome comparison with single-nucleotide polymorphism (SNP) detection. Results: SNP phylogenic analysis showed that all the southern African field isolates were more closely related to the vaccine strains than wild-type SG9 strains. Furthermore, SNPs in the pyruvate dehydrogenase (aceE) and/or lipopolysaccharide 1,2-glucosyltransferase (rfaJ) genes, which are known markers of attenuation, were found in four of the field isolates along with intact spv, SPI-1, and SPI-2 gene clusters, providing conclusive evidence that these four isolates were originally vaccine strains that reverted to virulence. Five other field isolates lacked the SG9R attenuation markers, but variant analysis identified an SNP in the yihX gene, insertions in the ybjX and hydH genes, and deletions in the ftsK and sadA genes that were shared between the field isolates and vaccine strains but absent in wild-type SG9, indicating that these field isolates were also likely revertant vaccines. Discussion: Overall, this study highlights different mechanisms of reversion of two commercial vaccines, where virulence caused by field isolates closely related to the Nobilis® SG9R vaccine was associated with the restoration of intact virulence gene clusters, and those derived from the Cevac®-SG vaccine were characterized by point mutations resulting in restored aceE and rfaJ genes. A possible new marker of attenuation was identified as a point mutation in the yihX gene, as well as four new candidate genes that could potentially be used to distinguish current vaccine strains from wild-type strains using PCR assays.

6.
Animals (Basel) ; 13(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37106847

RESUMO

Fowl typhoid, a septicaemic disease of poultry, is caused by Salmonella Gallinarum and leads to severe economic losses. The aim of the present study was to isolate, select and characterize indigenous probiotic lactobacilli with anti-Salmonella Gallinarum activity. A total 55 lactobacilli were isolated from the caeca and ileum parts of healthy chickens and identified to species level by 16S rDNA sequencing. All the isolates were initially screened for antimicrobial activity and selected isolates were further subjected to in vitro evaluation of probiotic properties. Lactobacilli isolates (n = 21) showed varying levels of activity (08-18 mm) against Salmonella Gallinarum. These selected isolates also showed tolerance to acidic conditions (pH 3 and 4). Out of these 21 isolates, 13 showed growth (>0.5 OD at 600 nm) 0.3% bile salts. Moreover, these isolates also had the ability of auto-aggregation (20.05 ± 0.62%-50.70 ± 1.40%), and co-aggregation with Salmonella Gallinarum (5.22 ± 0.21%-42.07 ± 0.70%). Results revealed that lactobacilli had a higher level of resistance to vancomycin (100%), streptomycin (100%), ciprofloxacin (95%), gentamicin (90%), doxycycline (90%), oxytetracycline (85%), and bacitracin (80%), and a lower level of resistance to penicillin (33%), erythromycin (28%), chloramphenicol (23%), fusidic acid (23%) and amoxicillin (4%). The Limosilactobacillus fermentum PC-10 and PC-76 were sensitive to most of the antibiotics. The overall results revealed that two Limosilactobacillus fermentum strains (PC-10 and PC-76) fulfill the in vitro selection criteria of probiotics, i.e, tolerance to low pH, resistance to bile salts, auto-aggregation, co-aggregation with Salmonella Gallinarum, and absence of acquired antibiotic resistance. The Limosilactobacillus fermentum PC-10 and PC-76 also inhibited the (>5 log10) growth of Salmonella Gallinarum in co-culture assay. It is concluded that Limosilactobacillus fermentum PC-10 and PC-76 may be further investigated and developed as anti-Salmonella Gallinarum probiotics for poultry.

7.
J Microbiol Methods ; 208: 106709, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015313

RESUMO

The poultry industry in developing countries is still combating mortality and economic loss due to Salmonella contamination. Salmonella Gallinarum is a common pathogen of poultry birds, being the etiologic agent of fowl typhoid, which specifically infects adult birds via the oral-fecal route. Timely detection of S. Gallinarum in poultry flocks can allow early treatment intervention leading to a decrease in economic losses. Detection of S. Gallinarum is challenging, while its PCR-based detection is a promising strategy, however, due to its high genomic similarity with other commonly existing Salmonella spp., identification of S. Gallinarum from poultry samples with high specificity is still a challenge. The current study was conducted to isolate S. Gallinarum from different districts of Pakistan, assess their antibiotic susceptibility profile, and develop a method for its early detection. A total of 20 strains were isolated using buffer peptone water, selenite cysteine broth, and Xylose Lysine Tergitol-4 (XLT-4) agar supplemented with tergitol and characterized by biochemical procedures. The antibiotic sensitivity profile highlighted the highest resistance of isolates towards novobiocin and nalidixic acid, commonly used antibiotics in Pakistan Poultry production. The primers designed to amplify a unique genomic region of S. Gallinarum, showed successful detection of twenty S. Gallinarum strains, while no amplification with genomic DNA from other common Salmonella spp. The reported method can be utilized to detect S. Gallinarum from tissue samples of infected birds in a short time leading to early diagnosis and timely treatment intervention.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Aves Domésticas , Paquistão , Poloxaleno , Doenças das Aves Domésticas/diagnóstico , Salmonella/genética , Aves , Reação em Cadeia da Polimerase/veterinária , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Diagnóstico Precoce , Salmonelose Animal/diagnóstico , Galinhas
8.
Trop Anim Health Prod ; 55(2): 126, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944831

RESUMO

Fowl typhoid (FT) is an economically significant bacterial disease of layers leading to a drastic drop in egg production. Due to increased public health concerns about antibiotics in poultry feed, a search for new safe antimicrobials for treating fowl typhoid is crucial. The antimicrobial effect of cinnamaldehyde essential oil (CnEO) against fowl typhoid in layers was investigated in this experiment. The 60-week-old BV300-layer birds (n = 100) were divided into five groups: the non-challenged control group A, only cinnamaldehyde-treated group B (CnEO @ 1:8000 dilutions through drinking water for 60 days), the challenged group C, challenged plus cinnamaldehyde therapy group D (CnEO @ 1:8000 dilutions through drinking water from 16 to 30 dpi), and challenged plus antibiotic therapy group E (chloramphenicol @ 1 gm/5lit through drinking water from 16 to 30 dpi). Hens from all challenged groups were challenged with Salmonella Gallinarum (VTCCBAA588) @ 1 × 108 CFU/ml orally. Various parameters such as clinical signs, mortality, egg production and egg weight, colony-forming unit (CFU) count of cecal content, eggshell surface, and egg yolk were evaluated all through 60 days of an experimental trial. Results indicated that, in the case of the cinnamaldehyde therapeutic group, there was a significant improvement in egg production, mild clinical signs, lower feed conversion ratio (FCR), and a significantly lower bacterial count in ceca and on the eggshell surface compared to the control challenge group. Thus, CnEO @ 1:8000 dilutions through drinking water can be a potential antimicrobial for controlling fowl typhoid.


Assuntos
Anti-Infecciosos , Água Potável , Óleos Voláteis , Doenças das Aves Domésticas , Salmonelose Animal , Febre Tifoide , Animais , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Febre Tifoide/microbiologia , Febre Tifoide/veterinária , Galinhas , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Óvulo
9.
Data Brief ; 47: 108959, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36865996

RESUMO

Salmonella Gallinarum (SG) is a host-restricted enterobacteria and the causative agent of fowl typhoid in poultry. Here, we report the complete genomes of two strains belonging to this serotype. SA68 is a field strain isolated from the livers of dead hen carcasses of a commercial layer farm presenting high mortality located in São Paulo city, Brazil, in 1990. Strain 9R corresponds to a live attenuated SG commercial vaccine. DNA was extracted from pure cultures and subjected to whole genome sequencing (WGS) using the Ion Torrent PGM System. The assemblies reached lengths of 4,657,435 (SA68) and 4,657,471 (9R) base pairs. Complete genomes were deposited in GenBank under the accession numbers CP110192 (SA68) and CP110508 (9R). Both genomes were analyzed and compared in terms of molecular typing, antibiotic resistance genes, virulence genes, Salmonella pathogenic islands (SPIs), insertion sequences and prophages. The data obtained show many similarities in the genetic content, with the exception of the SPI-12 and CS54 pathogenic islands, which are exclusive to the field strain. The information generated will help to understand the virulence differences of field and vaccinal SG strains and can be used to perform evolutionary and epidemiologic studies.

11.
Poult Sci ; 102(1): 102296, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463778

RESUMO

Fowl typhoid is a severe disease caused by Salmonella Gallinarum with considerable mortality and morbidity in laying hen farms. The current study has focused on controlling the infection in laying hens using anti-Salmonella spp. bacteriophage. The treatments included, PC, without challenge; NC, S. Gallinarum challenged (SGC); B5, 5 mg bacteriophage/kg + SGC; B10, 10 mg bacteriophage/kg + SGC. The Salmonella shedding, inflammatory responses, and gene expression of pro-inflammatory cytokines, toll-like receptor (TLR), and heat shock protein (HSP) in the jejunum, liver, and thigh muscle were tested in laying hens. Supplementation of bacteriophage reduced the abundance of S. Gallinarum in the excreta at d 3, 7, and 14. The abundance of S. Gallinarum was lower in the B10 than the B5 at d 7. Supplementation of bacteriophage decreased the abundance of S. Gallinarum in the oviduct, spleen, and cecum at d 14. The laying hens in the NC group showed an increased relative spleen weight compared with the PC and B10 treatments. Among the SGC treatments, the NC treatment showed higher gene expressions of IL-4 compared with the B5, higher gene expressions of interferon (IFNγ), TLR4, and tumor necrosis factor-α (TNF-α) compared with the B5 and B10, and higher gene expressions of HSP27 compared with the B10 in the jejunum. Dietary supplementation of B10 decreased the mRNA expressions of TLR4 and TNF-α compared with the B5 treatment in the jejunum. The NC treatment showed the highest gene expressions of HSP27, TLR4, and TNF-α in the liver. Dietary supplementation of B10 showed lower mRNA expressions of HSP27 compared with the B5 treatment in the liver. Moreover, the IFNγ and HSP27 were upregulated in the NC treatment compared with the B5 and B10 in the muscle. In conclusion, it can be suggested that bacteriophage is an effective supplement to control S. Gallinarum infection in laying hens and possibly lower horizontal contaminations in laying hen flocks.


Assuntos
Bacteriófagos , Doenças das Aves Domésticas , Salmonelose Animal , Fagos de Salmonella , Animais , Feminino , Galinhas/fisiologia , Fator de Necrose Tumoral alfa , Receptor 4 Toll-Like , Proteínas de Choque Térmico HSP27 , RNA Mensageiro , Salmonelose Animal/prevenção & controle , Doenças das Aves Domésticas/patologia
12.
Antibiotics (Basel) ; 11(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36009991

RESUMO

Salmonellosis is a bacterial zoonosis causing an array of health conditions. Non-typhoidal salmonellosis (NTS) has a discrete adaptation to certain animals; in poultry, pullorum and fowl typhoid are its primary disease manifestations. The diseases are prevalent in Nigerian poultry and have been well-studied in Nigeria, but less so in North Central Nigeria (NCN). Using field sampling, laboratory methods and a semi-structured questionnaire for 1000 poultry farms in NCN, we explored the incidence and risk factors for the persistence of NTS infection in poultry. Approximately 41.6% of the farms had experienced NTS over the last 18 months. Farm experience of NTS moderately predicted awareness of salmonellosis. Increasing stock in smallholder farms, self-mixing of concentrate on the farm, usage of stream water, pen odour, non-adherence and partial adherence of farms to recommended poultry vaccination against pullorum and fowl typhoid and lack of and non-adherence to biosecurity were identified risk factors that increased the odds of NTS infection in poultry. Antibiotic use practice may have reduced the isolation rate of NTS, yet NTS continues to challenge poultry farms in Nigeria. Identified risk practices must be mitigated intentionally and biosecurity and hygiene must be improved to reduce the burden of NTS.

13.
Front Bioeng Biotechnol ; 10: 885227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769104

RESUMO

Salmonella Gallinarum causes fowl typhoid in poultry leading to a huge economic loss to the poultry industry. The large virulence plasmid of S. gallinarum has been associated with various systemic infections in poultry. A five-gene spanning region (spvRABCD) of 7.8 kb on the large plasmid mainly confers virulence to the bacteria. However, the exact role of these genes in virulence has not been elucidated yet. SpvB exhibits delayed cell death by preventing actin polymerization followed by apoptosis during intracellular infection. The specific role of SpvB in causing the disease is not known yet. In the current study, the SpvB gene was deleted through CRISPR/Cas9 method from a large virulent plasmid of locally isolated S. gallinarum strain (SG18). The homology-directed repair method was used for complete deletion of SpvB gene using the modified pCas9 plasmid. The SpvB-deleted S. gallinarum strain (ΔSpvB_SG18), when tested for its virulence in broiler chicken showed no diseases signs and mortality. In addition, the avirulent strain does not affect the bird's weight and was rapidly cleared from the liver after infection. However, it cleared from the intestine only after 4-5 days, which suggests that the ΔSpvB_SG18 strain is unable to invade from the intestine to the liver. This is the first study to report a complete gene deletion from the S. gallinarum virulent plasmid and its effect. This method will be useful for the deletion of virulent genes from S. gallinarum, to study their role in pathogenesis, and to prepare an effective vaccine strain for controlling fowl typhoid in poultry.

14.
Front Microbiol ; 13: 880932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694286

RESUMO

Salmonella enterica serovar Gallinarum (S. Gallinarum) is a host-specific pathogen causing fowl typhoid, a severe systemic infection in poultry, which leads to substantial economic losses due to high morbidity and mortality in many developing countries. However, less is known about the pathogenic characteristics and mechanism of S. Gallinarum-induced systemic infection in chickens. In this study, we deleted the S. Gallinarum UDP-N-acetylglucosamine-1-phosphate transferase gene, which contributes to the biosynthesis of enterobacterial common antigen (ECA), and studied the pathogenicity of this wecB::Cm strain in a chicken model of systemic infection. The wecB::Cm mutant strain showed comparable growth but lower resistance to bile acid and nalidixic acid than the wild-type strain in vitro. In the oral infection model of chickens, the virulence of the wecB::Cm strain was significantly attenuated in vivo. Chickens infected with wild-type strain showed typical clinical signs and pathological changes of fowl typhoid and died between 6 and 9 days post-infection, and the bacteria rapidly disseminated to systemic organs and increased in the livers and spleens. In contrast, the wecB::Cm mutant strain did not cause chicken death, there were no significant clinical changes, and the bacterial numbers in the liver and spleen of the chickens were significantly lower than those of the chickens infected with the wild-type strain. In addition, the expression of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and CXCLi1 in the livers of wecB::Cm-infected chickens was significantly lower than that of the chickens infected with the wild-type strain. Furthermore, the attenuated wecB::Cm strain could persistently colonize the liver and spleen at low levels for up to 25 days post-infection and could induce a protective immune response in the chickens. These results indicate that the wecB gene is an important virulence factor of S. Gallinarum in the chicken model of systemic infection, and the avirulent wecB::Cm mutant could possibly be used as a live-attenuated vaccine strain for controlling fowl typhoid.

15.
Arq. bras. med. vet. zootec. (Online) ; 73(5): 1243-1247, Sept.-Oct. 2021. ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345271

RESUMO

Salmonelose é uma doença causada por bactérias do gênero Salmonella, com importância para saúde pública e animal. Dentre os sorotipos hospedeiro-específicos, destaca-se o Gallinarum, que possui os biovares Gallinarum e Pullorum adaptados às aves e amplamente difundidos pelo mundo. Os dados sobre a ocorrência de Salmonella spp. em criações avícolas alternativas no Brasil são escassos. O objetivo deste estudo foi pesquisar a ocorrência de Salmonella spp. em galinhas coloniais encaminhadas para necropsia ao LRD/FV/UFPel. Foram realizadas análises histopatológicas, microbiológicas e moleculares das colônias bacterianas isoladas de 12 amostras de órgãos de galinhas domésticas dos municípios de Pelotas e Piratini, no Rio Grande do Sul. Na análise microbiológica, foram isoladas bactérias do gênero Salmonella sorotipo Gallinarum das 12 amostras, sendo 10/12 bioquimicamente compatíveis com biovar Gallinarum e 2/12 com biovar Pullorum. Na análise molecular PCR 11/12, 91,7% foram identificadas genotipicamente como Salmonella spp. O presente estudo demonstrou uma elevada frequência de isolamento de Salmonella Gallinarum biovar Gallinarum em aves sintomáticas criadas em regime extensivo. Além disso, os dados epidemiológicos das aves analisadas demonstram que a infecção por Salmonella Gallinarum nesses casos está associada ao contato com aves silvestres e falhas de manejo sanitário.(AU)


Assuntos
Animais , Salmonella/isolamento & purificação , Salmonelose Animal/diagnóstico , Salmonelose Animal/epidemiologia , Galinhas
16.
Front Immunol ; 12: 717556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484221

RESUMO

Salmonella enterica subsp. enterica serovar Gallinarum (SG) is a common pathogen in chickens, and causes an acute systemic disease that leads to high mortality. The live attenuated vaccine 9R is able to successfully protect chickens older than six weeks by activating a robust cell-mediated immune response, but its safety and efficacy in young chickens remains controversial. An inactivated SG vaccine is being used as an alternative, but because of its low cellular immune response, it cannot be used as a replacement for live attenuated 9R vaccine. In this study, we employed gamma irradiation instead of formalin as an inactivation method to increase the efficacy of the inactivated SG vaccine. Humoral, cellular, and protective immune responses were compared in both mouse and chicken models. The radiation-inactivated SG vaccine (r-SG) induced production of significantly higher levels of IgG2b and IgG3 antibodies than the formalin-inactivated vaccine (f-SG), and provided a homogeneous functional antibody response against group D, but not group B Salmonella. Moreover, we found that r-SG vaccination could provide a higher protective immune response than f-SG by inducing higher Th17 activation. These results indicate that r-SG can provide a protective immune response similar to the live attenuated 9R vaccine by activating a higher humoral immunity and a lower, but still protective, cellular immune response. Therefore, we expect that the radiation inactivation method might substitute for the 9R vaccine with little or no side effects in chickens younger than six weeks.


Assuntos
Imunidade Celular , Imunidade Humoral , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Citocinas/metabolismo , Imunização , Lipopolissacarídeos/imunologia , Camundongos , Vacinas contra Salmonella/administração & dosagem , Salmonella enterica/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/efeitos da radiação
17.
J Vet Med Sci ; 83(7): 1147-1154, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34039786

RESUMO

Salmonella enterica serovar Gallinarum biovar Gallinarum (S. Gallinarum) is a host-specific pathogen causing systemic infection in poultry, which leads to significant economic losses due to high mortality. However, little is known about the dynamic process of systemic infection and pathogenic characteristics of S. Gallinarum in chickens. In the present study, we developed an oral infection model that reproduces the pathology of S. Gallinarum and clarified the host immune response of the infected chickens. Chickens at 20 days of age orally inoculated at a dose of 108 colony forming unit (CFU) showed typical clinical signs of fowl typhoid and died between 6 and 10 days post infection. The inoculated S. Gallinarum rapidly disseminated to multple organs and the bacterial counts increased in the liver and spleen at 3 days post infection. Pathological changes associated wirh inflammation in the liver and spleen became apparent at 4 days post infection, and increased expression of interferon (IFN)-γ and interleuikin (IL)-12 in the liver and spleen did not observed until 3 days post infection. These results indicate that S. Gallinarum rapidly spread to entire body through intestine, and the low-level of inflammatory responses in the liver during the early stage of infection may contribute to rapid, systemic dissemination of the bacteria. Our infection model and findings will contribute to the better understanding of the pathogenic mechanism of S. Gallinarum, and provide new insights into the prevention and control of fowl typhoid.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Salmonella enterica , Animais , Galinhas , Imunidade , Sorogrupo
18.
Avian Pathol ; 50(2): 132-137, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33146550

RESUMO

Salmonella Gallinarum (SG) is an avian-restricted pathogen that causes fowl typhoid in poultry. Although it has been reported frequently over many decades in poultry flocks worldwide, the microorganism is more commonly associated with poultry in developing countries, particularly those with high ambient temperatures, where the acute form of the disease results in considerable economic losses. A more detailed investigation of environmental factors that affect the course of disease may assist in identifying effective prevention and control measures. Heat stress is known to impair the immunological response to a variety of pathogens and clearly may be an important contributory factor in the prevalence of disease in countries with warm or hot climates. Thus, the objective of the present study was to evaluate the effects of heat stress on chickens infected with SG. For this, light and semi-heavy commercial laying hens were distributed randomly within four groups as follows: infected and non-infected groups in rooms held at ambient temperature, and infected and non-infected groups under heat stress. Clinical signs, egg production, and mortality were recorded daily. Bacteriological counts in liver and spleen samples were estimated at 2, 5, 7, and 14 days post-infection. The results showed that both SG infection and heat stress had similar effects on egg production and a synergistic effect of the two stressors was observed. The data show an interaction between disease and heat stress which could point towards environmental and biosecurity approaches to resolving the possible 30% fall in production observed in such countries.


Assuntos
Galinhas/fisiologia , Resposta ao Choque Térmico , Doenças das Aves Domésticas/fisiopatologia , Salmonelose Animal/fisiopatologia , Salmonella enterica/fisiologia , Febre Tifoide/veterinária , Animais , Galinhas/microbiologia , Ovos , Feminino , Fígado/microbiologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Baço/microbiologia , Febre Tifoide/microbiologia , Febre Tifoide/fisiopatologia
19.
Animals (Basel) ; 10(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317043

RESUMO

Salmonella Gallinarum is a Gram-negative bacteria that causes fowl typhoid, a septicemic disease with high morbidity and mortality that affects all ages of chickens. Although vaccines and antimicrobials have been used nationwide to eradicate the disease, the malady is still prevalent in Korea. In this study, we investigated the virulence and genetic variation of 116 S. Gallinarum isolates from laying hens between 2014 and 2018. A total of 116 isolates were divided into five Gallinarum Sequence Types (GST) through clustered regularly interspaced short palindromic repeats (CRISPR) subtyping method. The GSTs displayed changes over time. The 116 isolates showed no difference in virulence gene distribution, but the polyproline linker (PPL) length of the SpvB, one of the virulence factors of Salmonella spp., served as an indicator of S. Gallinarum pathogenicity. The most prevalent PPL length was 22 prolines (37.9%). The shortest PPL length (19 prolines) was found only in isolates from 2014 and 2015. However, the longest PPL length of 24 prolines appeared in 2018. This study indicates that PPLs of S. Gallinarum in Korea tend to lengthen over time, so the pathogenic potency of the bacteria is increasing. Moreover, the transition of GST was associated with PPL length extension over time. These results indicate that surveillance of changing GST and PPL length are necessary in the monitoring of S. Gallinarum isolates.

20.
Poult Sci ; 99(12): 6533-6541, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248568

RESUMO

Although it has rapidly decreased since the early 2000s, fowl typhoid still occurs in commercial layer chickens, causing a significant economic loss in Korea. There is growing concern about the emergence of new pathogenic strains of the causative agent, Salmonella Gallinarum, which is able to overcome vaccine immunity. It has also been suspected that the poultry red mite, Dermanyssus gallinae, which is commonly found in layer chicken farms, may be an important cause of the recurrence of fowl typhoid in the farms. This study was conducted to examine changes in the virulence of recent isolates of S. Gallinarum obtained from layer farms and estimate the potential of the disease transmission of D. gallinae in the farms. Clinical and environmental samples and mites collected from layer farms affected by fowl typhoid between 2013 and 2018 were tested for S. Gallinarum. The isolates were characterized by genotypic analyses and in vitro virulence assays with chicken-derived cell lines. Vaccine protection against recent isolates was examined in the chickens. A total of 45 isolates of S. Gallinarum were collected and there was no evidence of changes in their virulence. It has also been demonstrated that the S. Gallinarum 9R vaccine strain widely used in Korea is still effective in controlling fowl typhoid if the susceptibility of birds to the disease is not increased by stress. Salmonella Gallinarum isolated from the outer and inner parts of D. gallinae, environmental dust, and dead birds of the same farm showed the same or closely related genotypes. Consequently, the present study indicated that the horizontal transmission and environmental persistence of S. Gallinarum and the increased disease susceptibility of chickens in layer farms could be mediated by D. gallinae, causing persistent outbreaks of fowl typhoid.


Assuntos
Surtos de Doenças , Infestações por Ácaros , Doenças das Aves Domésticas , Salmonelose Animal , Salmonella , Animais , Galinhas , Surtos de Doenças/veterinária , Suscetibilidade a Doenças , Fazendas , Infestações por Ácaros/epidemiologia , Infestações por Ácaros/veterinária , Ácaros , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , República da Coreia/epidemiologia , Salmonella/patogenicidade , Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...